Krízový Manažment 2020, 19(1):20-24 | DOI: 10.26552/krm.C.2020.1.20-24

ANALYSIS AND PROPOSAL OF A VIDEO ANALYTICAL TOOL FOR MONITORING NON-STANDARD BEHAVIOR

Ladislav Mariš
Katedra bezpečnostného manažmentu, Fakulta bezpečnostného inžinierstva, Žilinská univerzita v Žiline 1. mája 32, Žilina 01026, Slovensko

Modern video analytics tools focus on automatic evaluation of activities in the scene. In the area of automatic detection of video surveillance systems, there are several tools that deal with the detection of non-standard behaviour. The system design is based on real-time detection of non-standard behaviour of individuals or groups of people using video analysis from security cameras. The aim of proposal is to develop a system that will be able to identify the three most common non-standard activities such as public property damage, personal injury and persecution. It is necessary to collect data and create annotated databases for training and testing of deep learning models of neural networks. The contribution describes the advantages of the solution. Currently, the proposed solution is in the process of assessing the research project for funding in the Slovak Research and Development Agency.

Keywords: Proposal, Research project, Video analytical tool, Video surveillance systems, Non-standard behaviour

Published: March 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mariš, L. (2020). ANALYSIS AND PROPOSAL OF A VIDEO ANALYTICAL TOOL FOR MONITORING NON-STANDARD BEHAVIOR. Krízový Manažment19(1), 20-24. doi: 10.26552/krm.C.2020.1.20-24
Download citation

References

  1. A.I. Tech. (2019). Retrieved from https://www.aitech.vision/en/
  2. Al Raisi, S. F. & Edirisinghe, E. (2017). A Machine Learning Based Approach to Human Observer Behaviour Analysis in CCTV Video Analytics & Forensics.i In: Proceedings of the 1st International Conference on Internet of Things and Machine Learning (IML'17). Liverpool, England. DOI: 10.1145/3109761.3158376 Go to original source...
  3. Axis Communications AB (2019). Retrieved from https://www.axis.com/
  4. Axxon Soft. (2019). Retrieved from https://www.axxonsoft.com/
  5. Citilog. (2019). Retrieved from http://www.citilog.com/
  6. Damen, D. & Hogg, D. (2012). Detecting Carried Objects from Sequences of Walking Pedestrians. In: IEEE Transactions on pattern analysis and machine intelligence. Vol. 34/ 6 ( pp.1056-1067). DOI: 10.1109/TPAMI.2011.205 Go to original source...
  7. Genetec Inc. (2019). KiwiVision People Counter. (2019). Retrieved from https://resources.genetec.com/kiwivision-video-analytics/kiwivision-security-video-analytics
  8. Grega, M. et. al. (2016). Automated Detection of Firearms and Knives in a CCTV Image. In: Sensors. Vol 16/1. Basel, Sweiz. DOI: 10.3390/s16010047. Go to original source...
  9. Hansen, D. W. & Ji, Q. (2010). In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. In: IEEE Transactions on pattern analysis and machine intelligence. Vol 32/3 (pp. 478-500). DOI: 10.1109/TPAMI.2009.30 Go to original source...
  10. InnoVi - Agent Vi - https://www.agentvi.com/
  11. Kim, K & Davis, L. S. (2011). Object Detection and Tracking for Intelligent Video Surveillance. In: Multimedia analysis, processing and communications. Studies in Computational Intelligence. (pp. 265-288). DOI: 10.1007/978-3-642-19551-8 Go to original source...
  12. Kmiec, M. & Glowacz, A. (2015). Object detection in security applications using dominant edge directions. In: Pattern Recognition Letters. vol 52 (pp. 72-79). DOI: 10.1016/j.patrec.2014.09.018 Go to original source...
  13. Kmiec, M. et al. (2012). Towards Robust Visual Knife Detection in Images: Active Appearance Models Initialised with Shape-Specific Interest Points In: Multimedia communications, services and security. Communications in Computer and Information Science. Vol 287 (pp. 148-152). Berlin, Germany. WOS:000306990300015 Go to original source...
  14. LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. In: Nature. Vol 521/7553 (pp. 436-444). New York, USA. DOI: 10.1038/nature14539 Go to original source...
  15. Liu, YX et. al. (2019). Intelligent monitoring of indoor surveillance video based on deep learning. 21st international conference on advanced communication technology (icact): ict for 4th industrial revolution. (pp. 648-653). Pyeongchang, South Korea WOS: 000470071700122 Go to original source...
  16. Nortek Security & Control LLC (2019). Retrieved from https://www.intelli-vision.com/
  17. OpenVino Toolkit. (2019). Retrieved from https://docs.openvinotoolkit.org/
  18. Sound Intel. (2019). Retrieved from https://www.soundintel.com/
  19. Sprinx Technologies. (2019). Retrieved from http://sprinxtech.com/en
  20. Tzamidou, G. et al. (2013). Carried Object Detection in Videos Using Color Information. In: IEEE Transactions on information forensics and security. Vol 8/10. ( pp.1620-1631). DOI: 10.1109/TIFS.2013.2279797 Go to original source...
  21. Wisenet. (2019). Retrieved from https://www.hanwha-security.eu/

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.